Search results for " Photonics"

showing 10 items of 510 documents

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

Comparaison expérimentale de techniques de caractérisation en intensité et phase d'impulsions optiques ultracourtes

2006

Nous comparons experimentalement les resultats de la caracterisation en intensite et en phase d'impulsions optiques ultracourtes obtenus par differentes techniques employant un montage auto/inter-correlateur en intensite et un analyseur de spectre. Nous employons pour ces tests une impulsion en limite de Fourier, une impulsion affectee par l'auto-modulation de phase et une impulsion similariton.

010309 optics020210 optoelectronics & photonics0103 physical sciences0202 electrical engineering electronic engineering information engineeringGeneral Physics and Astronomy02 engineering and technology01 natural sciencesJournal de Physique IV (Proceedings)
researchProduct

Effective characterization of the phase and intensity profiles of asymmetrically distorted light pulses in optical fiber systems

2009

International audience; We address the problem of characterization of light pulses that propagate in long-haul high-bit-rate optical communication systems under strongly perturbed conditions. We show that the conventional technique for characterization of the phase and intensity profile of such pulses becomes qualitatively inconsistent when the pulse's profile is asymmetrically distorted with respect to its center of mass. We resolve these inconsistencies by partially reformulating the conventional technique by means of appropriate pulse parameters, which we call upgraded parameters, that allow a fair characterization of the intensity and phase of all types of light pulses, including those …

010309 optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry020210 optoelectronics & photonics0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry0202 electrical engineering electronic engineering information engineeringStatistical and Nonlinear Physics02 engineering and technology190.5530 060.5530 060.2330 060.2360 060.451001 natural sciencesAtomic and Molecular Physics and Optics
researchProduct

Generation and Coherent Control of Pulsed Quantum Frequency Combs

2018

We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…

0301 basic medicineDensity matrixOptics and PhotonicsPhotonGeneral Chemical EngineeringSettore ING-INF/01 - ElettronicaGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesEngineering0302 clinical medicineQuantum stateQuantum DotsQuantumQCQuantum opticsPhysicsGeneral Immunology and Microbiologybusiness.industryGeneral NeuroscienceNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici030104 developmental biologyCoherent controlQuantum optics Integrated photonic devices Mode-locked lasers Nonlinear optics Four-wave mixing Frequency combs High- dimensional statesFrequency domainOptoelectronicsbusiness030217 neurology & neurosurgeryJournal of Visualized Experiments
researchProduct

Attraction in n ‐dimensional differential systems from network regulation theory

2018

0301 basic medicineDynamical systems theoryN dimensionalGeneral MathematicsGeneral Engineering02 engineering and technologyDifferential systemsAttraction03 medical and health sciences020210 optoelectronics & photonics030104 developmental biologyAttractor0202 electrical engineering electronic engineering information engineeringStatistical physicsMathematicsMathematical Methods in the Applied Sciences
researchProduct

Parametrical Optomechanical Oscillations in PhoXonic Whispering Gallery Mode Resonators

2019

AbstractWe report on the experimental and theoretical analysis of parametrical optomechanical oscillations in hollow spherical phoxonic whispering gallery mode resonators due to radiation pressure. The optically excited acoustic eigenmodes of the phoxonic cavity oscillate regeneratively leading to parametric oscillation instabilities.

0301 basic medicinePhysics::Opticslcsh:MedicineArticlemicrobubbles03 medical and health sciencesResonatorwhispering gallery mode resonators0302 clinical medicineOpticswhispering gallery modeslcsh:SciencePhysicsMultidisciplinarymicrobubble resonatorsbusiness.industryParametric oscillationlcsh:RUNESCO::FÍSICA::Óptica ::Fibras ópticasstimulated brillouin scatteringkerr modulation030104 developmental biologyRadiation pressureOptics and photonics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Excited stateOther photonicsparametrical optomechanical oscillationslcsh:QWhispering-gallery wavebusiness030217 neurology & neurosurgeryScientific Reports
researchProduct

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber

2009

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.

060.2400;190.4370Materials scienceOptical fiberPhysics::OpticsPolarization-maintaining optical fiber02 engineering and technologySensitivity and Specificity01 natural sciences7. Clean energyGraded-index fiberlaw.invention010309 opticsCondensed Matter::Materials Science020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringScattering RadiationDispersion-shifted fiberNonlinear Sciences::Pattern Formation and SolitonsOptical FibersPhotonic crystalPhotonsbusiness.industryLasersReproducibility of ResultsSignal Processing Computer-AssistedEquipment DesignMicrostructured optical fiberAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisNonlinear DynamicsComputer-Aided DesignOptoelectronicsbusinessElectromagnetic pulse; energy gap; fibersPhotonic-crystal fiber
researchProduct

Angular Trapping of Anisometric Nano-Objects in a Fluid

2012

We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the objec…

10120 Department of ChemistryOptics and Photonics3104 Condensed Matter PhysicsSilverMaterials scienceMacromolecular SubstancesSurface PropertiesStatic Electricity2210 Mechanical EngineeringMetal Nanoparticles1600 General ChemistryBioengineeringTrap (computing)OpticsOrientation (geometry)540 ChemistryNano-ElectrochemistryNanotechnologyScattering RadiationGeneral Materials ScienceFluidicsSurface chargeParticle Size1502 Bioengineeringbusiness.industryPhysicsMechanical EngineeringElectrostatic unitsDNAGeneral ChemistryCondensed Matter Physics2500 General Materials ScienceSymmetry (physics)KineticsHydrodynamicsLevitationAnisotropybusinessNano Letters
researchProduct

Steam sterilization processes affect the stability of clinical thermometers: Thermistor and prototypal FBG probe comparison

2020

Abstract Temperature is one of the most frequently measured physical quantities in clinical environment and a good biomarker of illness. The need for reusable probes, which have to be sterilized to prevent infections, requires the metrological qualification of thermometer probes in response to ageing effects induced by several sterilization processes. In this study, we investigated the effect of repeated sterilizations on both a commonly-used autoclavable thermistor probe and a prototypal Fiber Bragg Gratings (FBG) probe for temperature measurements. Findings highlighted a greater reliability of the proposed FBG probe than the commercial thermistor. Specifically, the FBG probe was able to w…

Accuracy and precisionMaterials science02 engineering and technology01 natural sciencesTemperature measurement010309 optics020210 optoelectronics & photonicsFiber Bragg gratingThermistor0103 physical sciences0202 electrical engineering electronic engineering information engineeringBiomedical sensorsElectrical and Electronic EngineeringInstrumentationbusiness.industryThermistorSterilizationAtomic and Molecular Physics and OpticsSteam sterilizationElectronic Optical and Magnetic MaterialsFiber Bragg Grating (FBG)Control and Systems EngineeringThermometerBiomedical sensorOptoelectronicsClinical thermometerbusinessOptical Fiber Technology
researchProduct

Myopia, the challenge of Ophthalmology and its worldwide “explosive epidemic”

2018

AdultAtropinePediatricsmedicine.medical_specialtyAdolescentExplosive materialContact LensesMEDLINE02 engineering and technology01 natural sciences010309 optics020210 optoelectronics & photonicsRisk Factors0103 physical sciencesMyopia0202 electrical engineering electronic engineering information engineeringmedicineHumansAge of OnsetChildLife StyleLightingLife stylebusiness.industryIncidenceIncidence (epidemiology)Disease progressionGeneral MedicineEyeglassesOphthalmic solutionsDisease ProgressionSunlightMorbidityOphthalmic SolutionsAge of onsetbusinessArchivos de la Sociedad Española de Oftalmología (English Edition)
researchProduct