Search results for " Photonics"
showing 10 items of 510 documents
Dynamical learning of a photonics quantum-state engineering process
2021
Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…
Comparaison expérimentale de techniques de caractérisation en intensité et phase d'impulsions optiques ultracourtes
2006
Nous comparons experimentalement les resultats de la caracterisation en intensite et en phase d'impulsions optiques ultracourtes obtenus par differentes techniques employant un montage auto/inter-correlateur en intensite et un analyseur de spectre. Nous employons pour ces tests une impulsion en limite de Fourier, une impulsion affectee par l'auto-modulation de phase et une impulsion similariton.
Effective characterization of the phase and intensity profiles of asymmetrically distorted light pulses in optical fiber systems
2009
International audience; We address the problem of characterization of light pulses that propagate in long-haul high-bit-rate optical communication systems under strongly perturbed conditions. We show that the conventional technique for characterization of the phase and intensity profile of such pulses becomes qualitatively inconsistent when the pulse's profile is asymmetrically distorted with respect to its center of mass. We resolve these inconsistencies by partially reformulating the conventional technique by means of appropriate pulse parameters, which we call upgraded parameters, that allow a fair characterization of the intensity and phase of all types of light pulses, including those …
Generation and Coherent Control of Pulsed Quantum Frequency Combs
2018
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…
Attraction in n ‐dimensional differential systems from network regulation theory
2018
Parametrical Optomechanical Oscillations in PhoXonic Whispering Gallery Mode Resonators
2019
AbstractWe report on the experimental and theoretical analysis of parametrical optomechanical oscillations in hollow spherical phoxonic whispering gallery mode resonators due to radiation pressure. The optically excited acoustic eigenmodes of the phoxonic cavity oscillate regeneratively leading to parametric oscillation instabilities.
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber
2009
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.
Angular Trapping of Anisometric Nano-Objects in a Fluid
2012
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the objec…
Steam sterilization processes affect the stability of clinical thermometers: Thermistor and prototypal FBG probe comparison
2020
Abstract Temperature is one of the most frequently measured physical quantities in clinical environment and a good biomarker of illness. The need for reusable probes, which have to be sterilized to prevent infections, requires the metrological qualification of thermometer probes in response to ageing effects induced by several sterilization processes. In this study, we investigated the effect of repeated sterilizations on both a commonly-used autoclavable thermistor probe and a prototypal Fiber Bragg Gratings (FBG) probe for temperature measurements. Findings highlighted a greater reliability of the proposed FBG probe than the commercial thermistor. Specifically, the FBG probe was able to w…